
Las matemáticas suelen aportar herramientas para la modelización en diferentes ciencias. En las ciencias económicas solemos utilizar éstos modelos para la predicción -nunca exacta- del nivel de actividad, de desempleo, inflación, etcétera, y a partir de allí hacer una proyección del impacto en el tiempo (t+1) de las políticas implementadas en el tiempo (t). Es decir, qué pasará mañana con las medidas que tomamos hoy.
Un viejo modelo inflacionario de Olivera utiliza la herramienta de las series geométricas para proyectar si en una economía de sólo dos sectores, con puja distributiva, la inflación de un período a otro va a: transitar hacia un número determinado; va a ir cediendo; o si vamos a estar ante un panorama de hiperinflación. Es decir, analiza si la capacidad de los dos sectores en pugna, digamos trabajadorxs y empresarixs, de trasladar a precios y salarios sus demandas sectoriales va a llevar la inflación a números indescifrables. Este modelo hiperinflacionario es sencillo. Cuenta con un parámetro R, que expresa la capacidad de cada uno de los sectores de trasladar sus intereses sectoriales a precios. Si R es mayor a 1 nos encontramos ante un panorama de hiper. Solemos decir que el esquema “no converge”, crece exponencialmente. Es explosivo. Por su parte, cuando R se encuentre entre 0 y 1 estamos ante un panorama inflacionario que “converge” hacia un número. Es decir, hay inflación pero está controlada. En estos ejemplos, como dijimos, R depende de la capacidad de los sectores en pugna de trasladar sus intereses sectoriales a los precios.
¿Qué tiene que ver esto con nuestra situación actual? Es simple, para comprenderlo hay dos cosas con las que en el panorama actual tenemos/debemos tener: tiempo y paciencia.
Arranquemos.
Una serie geométrica es una sucesión de sumas que dependen de dos factores a los que identificamos con las letras A y R. Una serie geométrica tiene la siguiente forma: E Ar^n, desde el tiempo 0 hasta infinito. (¡No se asusten!, parece más difícil de lo que realmente es). La letra E implica “suma”, por eso decíamos que era una sucesión de sumas que van desde el tiempo inicial -digamos que en este caso sería desde el primer caso confirmado- hasta “infinito” que representa los eslabones de contagio.
Ahora vamos con A y R. A está dado, es decir, es el número de personas que ya están contagiadas, que provienen de lugares de riesgo, no lo sabemos con exactitud, pero tampoco es lo más importante. Vayamos al parámetro central: R. Decimos parámetro central porque, independiente del número de partida A, es el parámetro R el que nos determina la velocidad de “transmisión”. Es el acelerador del sistema. En las series geométricas este parámetro representa la velocidad con que la suma crece a cada período, a cada contagio en este caso.
Dijimos previamente que cuando R es mayor a 1, la serie no converge. En los esquemas macroeconómicos eso implica, dijimos, que estábamos ante un panorama de hiperinflación, pero en el caso de la epidemiología, estamos ante un crecimiento exponencial y sin límite de contagios. Vayamos a el ejemplo práctico, desarrollemos la serie. Supongamos que 100 personas vuelven de viajes a zonas de riesgo contagiadas con Coronavirus. Ese es nuestra A=100. Sabemos por la opinión de nuestros profesionales que nuestro R=2.5. A saber, que cada persona contagiada, sin aislamiento, contagia a 2.5 personas. Entonces nuestra serie geométrica se desarrolla de la siguiente manera: 100*2.5 + 100*2.5^2 + 100*2.5^3 + 100*2.5^4…….. + 100*2.5^n. (El símbolo ^2 es una potencia, en ese caso es al cuadrado, ^3 es al cubo, y así sucesivamente). Si hacemos esa suma, nos encontramos ante un crecimiento exponencial de casos a medida que se van dando los contagios. Exponencial implica que es más profundo que lineal. A groso modo, si en el tiempo “t” tenemos 2 contagiados, en el tiempo “t+1” no tendremos 4, sino 6 u 8.
Avancemos. Sabemos que nuestro A está dado, no lo conocemos, pero tampoco es relevante, son los contagiados por contacto directo en los países de riesgo. Dijimos que lo que determina una serie geométrica es R. ¡He aquí la esperanza!: es lo único sobre lo que podemos influir. ¿Cómo hacemos para que nuestra serie geométrica converja, es decir, sea controlable y se vaya suavizando la curva de contagios hasta que pase a su fase decreciente? Si, debemos bajar R hasta que cada persona contagiada transmite el virus a una cantidad de personas que vaya entre 0 y 1. Pero ¿cómo lo logramos? ¡Aislamiento social!. La única manera de que cada persona contagiada no haga crecer exponencialmente el número de contagiados es aislarse, es aislarnos. Todos, todas, todes.
Tenemos la decisión política de hacerlo, tenemos un convencimiento mayoritario de hacerlo, y ahora también tenemos la explicación matemática de por qué hacerlo. No es en un rato, no es mañana, es hoy.
Bajemos a R.
#QuedateEnCasa
La conducción de la UIA relativiza el cierre de plantas con el argumento de que…
En septiembre, el hijo del nuevo Señor 5 viajó con recursos de la SIDE a…
El documental de Ulises Rosell, "Presente continuo", acompaña el vínculo entre un joven con trastorno…
"El único objetivo de las denunciantes es que no siga victimizando", dijo la abogada Perugino…
La Casa Blanca presentó la Estrategia de Seguridad Nacional 2025 con un detalle de la…
Argentina gasta 301 millones de dólares para comprar 24 F16 de fabricación estadounidense que Dinamarca…
Como Diego en 1994, Leo jugará su última Copa en Estados Unidos en 2026. Los…
Casi en espejo con la situación en Diputados, la cohesión de la bancada del PRO…
El presidente dejó de lado la confrontación y habilitó a sus funcionarios a conceder pedidos…
El 9 de diciembre de 1985, la Cámara Federal dio por probado el plan criminal…
El bloque conformado por los gobernadores que quisieron armar una nueva avenida del medio pierde…
Las audiencias del debate de la Causa 13 marcaron la vida de varios trabajadores de…